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Abstract. According to recent findings [1,2], empirical covariance matrices deduced from financial return
series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding
eigenvectors, their structure can essentially be regarded as random. In [1], e.g., it is reported that about
94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropri-
ately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio
optimization as well as in industry-wide risk management practices, we analyze the possible implications
of this effect. Simulation experiments with matrices having a structure such as described in [1,2] lead us
to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance
under linear constraints) noise has relatively little effect. To leading order the solutions are determined
by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise
is rather small: depending on the size of the portfolio and on the length of the time series, it is of the
order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance
under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international
capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a
high degree of degeneracy of the solutions.

PACS. 87.23.Ge Dynamics of social systems – 05.45.Tp Time series analysis – 05.40.-a Fluctuation
phenomena, random processes, noise, and Brownian motion

1 Introduction

The concept of financial risk, which attempts to quan-
tify the uncertainty of the outcome of an investment and
hence the magnitude of possible losses, plays a fundamen-
tal role in finance today. Portfolio optimization aims at
giving a recipe for the composition of portfolios such that
the overall risk is minimized for a given reward, or, con-
versely, reward is maximized for a given risk. For exam-
ple, the classical portfolio optimization problem formu-
lated first by Markowitz [3] relies on the variance as a
risk measure and expected return as a measure for re-
ward. Since the return on a portfolio is a linear combi-
nation of the returns on the assets forming the portfolio
with weights given by the proportion of wealth invested
in the assets, the portfolio variance can be expressed as a
quadratic form of these weights with the volatilities and
correlations as coefficients. For any practical use of the
theory, it will, therefore, be necessary to have reliable es-
timates for the volatilities and correlations, which, in most
cases, are obtained from historical return series. Actually,
volatility and correlation estimates extracted from histor-
ical data have become standard tools also for several other
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risk management practices widely utilized in the financial
industry.

Recently it has, however, been found by two inde-
pendent groups [1,2] that empirical covariance matrices
deduced from financial return series contain such a high
amount of noise that, apart from a few large eigenvalues
and the corresponding eigenvectors, their structure can es-
sentially be regarded as random. In [1], e.g., it is reported
that about 94% of the spectrum of correlation matrices
determined from return series on the S&P 500 stocks can
be fitted by that of a random matrix drawn from an appro-
priately chosen ensemble. In view of these striking results,
the Markowitz portfolio optimization scheme based on a
purely historical determination of the covariance matrix
would seem to be totally inadequate [1,4], but the credi-
bility of a number of standard risk management method-
ologies would also be shaken.

In this paper we will argue, however, that the impact of
the results of [1,2] on the portfolio optimization problem
may not be as dramatic as one might have expected. More
specifically, it will be shown in a simulation example that
for parameter values typically encountered in practice, the
risk of the optimal portfolio determined in the presence
of noise is usually no more than 5–15% higher than the
risk without noise. Despite the high degree of noise of the
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covariance matrix, which translates indeed into a signifi-
cant displacement in the weights of the optimal portfolio,
the effect on the actual risk at the optimum is only of
second order and therefore less pronounced. This suggests
that some of the risk management methodologies based on
empirical covariance matrices can actually be sufficiently
accurate. The main purpose of this paper is to point out
that the results of [1,2] and the practical usefulness of
covariance matrices can, in fact, be reconciled.

2 Results and discussion

We consider the following simplified version of the classi-
cal portfolio optimization problem: the portfolio variance∑n

i,j=1 wi σij wj is to be minimized under the budget con-
straint

∑n
i=1 wi = 1, where wi denotes the weight of asset

i in the portfolio while σij represents the covariance ma-
trix of returns (considered here as given). This means we
exclude the riskless bond and seek the minimal risk port-
folio in the space of risky assets. One might, of course,
impose additional constraints (e.g. the usual one on the
return), but the simplified form at hand provides the most
convenient laboratory to test the effect of noise. The solu-
tion to the optimization problem can then be found using
the method of Lagrange multipliers, and after some trivial
algebra one obtains for the weights of the optimal portfo-
lio:

w∗
i =

∑n
j=1 σ−1

ij∑n
j,k=1 σ−1

jk

· (1)

According to [1,2], correlation matrices determined
from financial return series are such that apart from a
few large eigenvalues and the corresponding eigenvectors,
their structure is essentially random. Random matrix the-
ory (RMT) allows one to calculate different eigenvalue and
eigenvector statistics e.g. of a matrix Cij = 1

T

∑T
t=1 xit xjt

determined from series of random variables xit indepen-
dent and identically distributed, of mean zero and of unit
variance (i = 1, 2, . . . , n and t = 1, 2, . . . , T ), see [1,2]
and references therein. The observed deviations of empir-
ical correlation matrices from RMT predictions [1,2,5,6]
are due to genuine correlations between the financial se-
ries, while the apparently dominating random part can be
interpreted as noise superimposed on these correlations.
Therefore, any procedure using as input correlation ma-
trices determined from financial return series will be bi-
ased by a significant amount of noise, and for the practical
applicability of the procedure it would be highly desirable
to know the magnitude of this bias.

In order to get an idea about the magnitude of the
effect, we compare the solution obtained for a given noise-
less covariance matrix σ

(0)
ij with that obtained when noise

is added (we call the new covariance matrix σij). If, for
example, σ

(0)
ij is simply chosen to be an n × n identity

matrix, noisy covariance matrices σij can be generated as

σij =
1
T

T∑

t=1

xit xjt, (2)
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Fig. 1. (a) Histogram of nw∗
i illustrating the displacement of

the solution in the presence of noise for N = 500 and T = 3000

(compare to nw
(0)∗
i = 1). To achieve smoothness, the his-

togram has been averaged over 10 samples for σij . (b) Standard
deviation of nw∗

i for N = 500 and different values for T .

where xit ∼ i.i.d. N(0, 1). (Of course, in the limit T → ∞
the noise disappears and σij → σ

(0)
ij .) The solutions to the

optimization problem in this setup are w
(0)∗
i = 1

n and w∗
i

given by equation (1), respectively. The difference between
the two solutions shows the displacement of the optimal
portfolio due to noise and provides a measure for the effect
of noise on the optimization problem.

We have studied the behavior of nw∗
i for different sys-

tem sizes N and different time series lengths T . Without
noise this quantity is nw

(0)∗
i = 1 for any i. In the presence

of noise, however, nw∗
i oscillates around 1. The distribu-

tion of nw∗
i for typical values of N and T is given in Fig-

ure 1a. It can be seen from the figure that weights as low
as 0 or as high as 2 appear with non-negligible frequency,
which suggests that the effect of noise is quite strong, i.e.
the optimal portfolio obtained using the noisy covariance
matrix may be rather different from the “true” optimal
portfolio. The standard deviation of this distribution as a
function of T is given in Figure 1b. One can see that the
deviation from the optimal portfolio remains significant
even for quite large T .
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Fig. 2. Ratio q =
σp

σ
(0)
p

quantifying the decrease in efficiency

of the optimal portfolio due to noise in the covariance matrix
as a function of T (N = 500).

However, the effect of noise should be assessed not
so much on the basis of the change in composition,
but rather of the shift in the volatility of the optimal
portfolio, because this is the only factor rational in-
vestors should actually care about in our simplified op-
timization problem. Let us, therefore, compare the vari-

ance of the “true” (noiseless) optimal portfolio σ
(0)
p

2
=

∑n
i,j=1 w

(0)∗
i σ

(0)
ij w

(0)∗
j =

∑n
i=1 w

(0)∗
i

2
with the “true”

variance of the optimal portfolio obtained in the presence
of noise σ2

p =
∑n

i,j=1 w∗
i σ

(0)
ij w∗

j =
∑n

i=1 w∗
i
2. More pre-

cisely, we have calculated the volatility ratio q = σp

σ
(0)
p

that

measures the increase in volatility (and therefore decrease
in efficiency) of the optimal portfolio due to noise. Figure 2
shows the magnitude of this quantity as a function of T for
N given. It can be seen from the figure that for N = 500
and T > 3000 the increase in volatility due to noise is less
than 10%. The decrease in efficiency is, in most cases, of
the order of 5–15% that seems reasonable from a practical
point of view (2000 < T < 5000). It seems, therefore, that
despite its obvious effect on the weights of the optimal
portfolio, noise has a significantly less pronounced impact
on the risk at the optimum.

It is interesting to estimate the magnitude of this effect
for values of N and T similar to those considered in [1,2].
In [1] daily returns on N = 406 stocks of the S&P 500
over the period 1991–1996 (a total of T = 1309 daily ob-
servations) have been used for constructing the correlation
matrix. We have found that for this portfolio size and for
this time series length the value of q is around 1.20, i.e.
the risk of the optimal portfolio in the presence of noise
is about 20% larger than without. As for [2], in this pa-
per 30-minute returns on the largest N = 1000 US stocks
over the two-year period 1994–1995 (a total of T = 6448
data points for each series) have been used, for which q
is about 1.09, i.e. the decrease in efficiency due to noise
is only around 9%. According to these findings, the im-
pact of noise on the portfolio optimization problem does
not seem to be as dramatic as one might have feared and
that, despite the high level of noise, empirical covariance

matrices can still be used as input for a portfolio opti-
mization problem without loosing too much of accuracy.

Moreover, for smaller system sizes N we need shorter
time series lengths T to achieve the same degree of preci-
sion. For example, for N = 100 and T = 500 the increase
in volatility is 11%, while for T = 1000 it is only about
5%. Therefore, if one uses covariance matrices obtained
e.g. from 4 years of daily returns (around 1000 observa-
tions) say on the S&P 100 stocks, the loss in efficiency due
to noise in the covariance matrix is only about 5%.

In order to give a better representation of the ac-
tual structure of empirical correlation matrices, we have
repeated our experiments with matrices which, in ad-
dition to the pure random part given by equation (1),
have one clearly distinct eigenvalue chosen to be about
25 times larger than the largest eigenvalue predicted by
RMT (see [1,2]), with a corresponding eigenvector in the
direction of (1, 1, . . . , 1). The displacement of the risk as-
sociated with the optimal portfolio due to noise has been
found to be of the same order of magnitude as in the cases
discussed earlier.

The explanation for the lack of a more dramatic ef-
fect on the portfolio in the presence of noise is actually
very simple. A function f(x) with a single well-defined flat
minimum at x∗ (e.g. a quadratic function) varies slowly in
the neighbourhood of the minimum, therefore, the value
f(x) need not be much higher than f(x∗), even for sig-
nificant deviations of x from the minimum. In our case,
the volatility of the portfolio is exactly such a function of
the weights wi, and therefore even if the weights deviate
significantly from the optimal ones (as they do), the risk
of the portfolio will not be dramatically affected. Since ra-
tional investors should not care about the composition of
their portfolios but only about its risk, the effect of noisy
covariance matrices on the portfolio optimization problem
will be less significant than expected. In other words, it
appears that despite noise, covariance matrices deduced
from financial return series can have, in certain cases, a
reasonable practical use.

Let us note, however, that the picture becomes com-
pletely different if we consider an optimization problem
with non-linear constraints like those that arise e.g. in
the case of margin accounts or in international capital
adequacy regulation [7–9]. In these cases the budget con-
straint has the form

∑n
i=1 γi |wi| = 1. As shown in [7],

this problem maps exactly onto finding the ground states
of a long-range spin glass, and now the presence of noise
leads to a serious instability and a high degree of degen-
eracy of the solutions. The results of [7] have far reaching
economic implications, the analysis of which are, however,
far beyond the scope of this short note.

3 Conclusion

In this paper the impact of noisy covariance matrices
on the portfolio optimization problem has been investi-
gated. Earlier studies [1,2] have pointed out that a large
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part of the spectrum of empirical covariance matrices de-
duced from financial return series corresponds to that of a
purely random matrix. The presence of such a high level
of noise in covariance data could have had devastating
consequences for the reliability of different risk manage-
ment practices based on the use of these matrices. We have
analyzed the impact of this noise on the classical portfo-
lio optimization problem and found that the risk of the
optimal portfolio determined in the presence of noise is
typically no more than 5–15% higher than in the absence
of it, showing that the decrease in efficiency of the optimal
portfolio is actually much less dramatic. This suggests that
the important results of [1,2] and the practical usefulness
of covariance matrices can, in fact, be reconciled.

This work has been supported by the Hungarian National Sci-
ence Found OTKA, Grant No. T 034835.

References

1. L. Laloux, P. Cizeau, J.-P. Bouchaud, M. Potters, Phys.
Rev. Lett. 83, 1467 (1999).

2. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral,
H.E. Stanley, Phys. Rev. Lett. 83, 1471 (1999).

3. H. Markowitz, Portfolio Selection: Efficient Diversification
of Investments (J. Wiley and Sons, New York, 1959).

4. L. Laloux, P. Cizeau, J.-P. Bouchaud, M. Potters, Risk 12,
69 (1999).

5. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral,
T. Guhr, H.E. Stanley, e-print cond-mat/0108023.
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